尝试改进微信读书个性化推荐:一个基于 CTR 预估的方法

引言

微信读书的书籍个性化推荐包括:

  1. 冷启动用户的书籍推荐,如发现 tab – 新手卡片,为新注册用户推荐书籍,方法参见文章 微信读书冷启动用户书籍推荐初探:一个借助微信用户画像的方法 微信读书冷启动推荐实战:一种基于用户属性的方法
  2. 基于协同过滤(Item-CF / Word2vec)的书籍推荐,如于书城 – 搜索 – 猜你喜欢,为老用户推荐书籍。

为提升 2 的效果,本文设计了一个离线实验,用 CTR 预估方法做书籍个性化推荐,发现效果(准确率、召回率)较现网方法(Word2vec)提升接近一倍。

实验设计

实验对象

随机取 2017 年 1~4 月有加书架行为的 500 名用户。

推荐任务

对每个用户,根据 1~3 月的用户行为,预测 3~4 月被加入书架的 topN 本书,作为推荐结果。topN 取 200。

评估指标

TopN 准确率(查全率):推荐命中次数/推荐次数

TopN 召回率(查准率):推荐命中次数/加书架次数

推荐算法

对照组:Word2vec

微信读书的猜你喜欢使用 Item-CF 和 Word2vec 两种算法,二者转化率相近。在本次实验中用 Word2vec 作为对照组。

Word2vec 是一个语言模型,能够从语料中学习到词汇的向量表示,向量可以用于衡量词汇间的相似度。Word2vec 也可用于个性化推荐,能够学习到物品、用户间的相似度,是一种协同过滤的推荐方法。

具体地说,我们把书籍 ID 当成 word,把每个用户加书架的书籍 ID 序列当成 sentence,把 1~3 月用户的加书架行为当成训练语料,输入 Word2vec,得到每个书籍 ID 的向量表示。两本书籍间的向量距离,可以表示两本书的相似度。

对每个用户,把他 1~3 月读的近 15 本书作为种子,寻找向量距离最相近的 topN 本书,作为推荐结果。

微信读书现网 word2vec 的训练语料把用户感兴趣的书作为 word,而在本次实验中简单处理,把用户加书架的书籍作为 word。

实验组:CTR 预估方法

CTR 预估方法,即利用点击率预测模型,对候选集的 user-item 特征,预测点击率,然后重新排序生成推荐结果。

利用 CTR 预估方法做推荐,一般步骤是:

  1. 生成候选集:利用协同过滤方法(Word2vec)产生的 topN * 3 个推荐结果作为候选集。
  2. 训练点击率预估模型:以 1~4 月非实验对象用户数据作为训练集,根据用户在 1~3 月的微信属性、阅读行为和书籍的特征(详见附录),预测用户在 4月加书架的概率。常见的模型有:LR / GBDT / GBDT+LR / FM 等,可参考 3
  3. 点击率预估,对候选集重排序:对每个用户,用 LR 模型预测他把候选集书籍加入书架的概率,然后排序取 topN 作为推荐结果。

其中,GBDT 算法可以自动选择特征,LR 需要特征筛选以提高准确率,具体过程略,可参考 4

总结

效果 \\ 推荐方法

Word2vec(现网)

CTR LR

CTR GBDT

召回率(查全率)

0.061116

0.103632

0.102746

准确率(查准率)

0.001202

0.002614

0.002592

从实验结果可以发现,CTR 预估方法较 Word2vec 方法在推荐效果上有近一倍的提升。

提升的原因,可能是 Word2vec 方法利用单一的用户加书架的信息进行训练;而 CTR 预估方法利用了更丰富信息进行训练,如用户属性、用户行为、书籍属性等,更好地学习用户的阅读偏好,从而作出更精准的推荐。

而且随着更多有效特征的加入,如用户-书籍的点赞评论特征、价格特征、对语音节目偏好特征,CTR 预估方法能够学习到更全面、更具体的用户阅读偏好,以进一步提升个性化推荐效果。

此外,CTR 预估方法也可用于读书电台等听书栏目,通过个性化推荐,提升用户体验。

参考

1 美团推荐算法实践

2 因子分解机FM-高效的组合高阶特征模型

3 CTR预估模型(点击率预测模型)的进化之路

4 特征工程简介

5 Word2Vec-知其然知其所以然

6 LR, 逻辑回归

附录

CTR 预估模型特征

特征

name

用户性别

user_sex

用户年龄

user_age

用户n线城市

user_city

用户性别哑变量

user_sex_0

user_sex_1

user_sex_2

user_sex_3

用户年龄哑变量

user_age_0

user_age_1

user_age_2

user_age_3

user_age_4

用户城市哑变量

user_city_0

user_city_1

user_city_2

user_city_3

user_city_4

用户最近加书架书的标签和此书标签的交集数

past_tag_num

物品被具有某特征用户加书架转化率

item_sex_0_ctr

item_sex_1_ctr

item_sex_2_ctr

item_sex_3_ctr

item_age_0_ctr

item_age_1_ctr

item_age_2_ctr

item_age_3_ctr

item_age_4_ctr

item_city_0_ctr

item_city_1_ctr

item_city_2_ctr

item_city_3_ctr

item_city_4_ctr

本站文章资源均来源自网络,除非特别声明,否则均不代表站方观点,并仅供查阅,不作为任何参考依据!
如有侵权请及时跟我们联系,本站将及时删除!
如遇版权问题,请查看 本站版权声明
THE END
分享
二维码
海报
尝试改进微信读书个性化推荐:一个基于 CTR 预估的方法
本文设计了一个离线实验,用 CTR 预估方法做书籍个性化推荐,发现效果(准确率、召回率)较现网方法(Word2vec)提升接近一倍。
<<上一篇
下一篇>>